
1

3

W
riting XM

L

WRITING XML
The XML specification defines how to write
a document in XML format. XML is not a
language itself. Rather, an XML document is
written in a custom markup language, according
to the XML specification. For example, there
could be custom markup languages describing
genealogical, chemical, or business data, and
you could write XML documents in each one.

Every custom markup language created using
the XML specification must adhere to XML’s
underlying grammar. Therefore, that is where
I will start this book. In this chapter, you will
learn the rules for writing XML documents,
regardless of the specific custom markup lan-
guage in which you are writing.

Officially, custom markup languages created
with XML are called XML applications. In
other words, these custom markup languages
are applications of XML, such as XSLT, RSS,
SOAP, etc. But for me, an application is a full-
blown software program, like Photoshop. I find
the term so imprecise, I usually try to avoid it.

Tools for Writing XML
XML, like HTML, can be written using any
text editor or word processor. There are also
many XML editors that have been created since
the first edition of this book. These editors have
various capabilities, such as validating your
XML as you type (see Appendix A).

I’ll assume you know how to create new docu-
ments, open old ones for editing, and save them
when you’re done. Just be sure to save all your
XML documents with the .xml extension.

00 XML2eVQS_text.indb 300 XML2eVQS_text.indb 3 11/24/08 4:37:27 PM11/24/08 4:37:27 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

4

Chapter 1
An

 X
M

L S
am

pl
e

An XML Sample
XML documents, like HTML documents, are
comprised of tags and data. One big difference
between the two documents, however, is that
the tags used by an XML document are created
by the author. Another big difference is that an
XML document stores and describes that data;
it doesn’t do anything more with the data, such
as display it, like an HTML document does.

XML documents should be rather self-explan-
atory in that the tags should describe the data
they contain (Figure 1.1).

The first line of the XML document <?xml
version="1.0"?> is the XML declaration which
notes which version of XML you are using.
The next line <wonder> begins the data part
of the document and is called the root element.
In an XML document, there can be only one
root element.

The next 3 lines are called child elements, and
they describe the root element in more detail.

 <name>Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>

The last child element, height, contains an
attribute called units which is being used to
store the specific units of the height measure-
ment. Attributes are used to include additional
information to the element, without adding
text to the element itself.

Finally, the XML document ends with the clos-
ing tag of the root element </wonder>.

This is a complete and valid XML document.
Nothing more needs to be written, added,
annotated, or complicated. Period.

<?xml version="1.0"?>

<wonder>

 <name>Colossus of Rhodes</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

</wonder>

x m l

 An XML document describing one of the Figure 1.1
Seven Wonders of the World: the Colossus of Rhodes.
The document contains the name of the wonder, as
well as its location and its height in feet.

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name>Colossus of Rhodes</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 </wonder>

 <wonder>

 <name>Great Pyramid of Giza</name>

 <location>Giza, Egypt</location>

 <height units="feet">455</height>

 </wonder>

</ancient_wonders>

x m l

 Here I am extending the XML document Figure 1.2
in Figure 1.1 above to support multiple <wonder>
elements. This is done by creating a new root element
<ancient_wonders> which will contain as many
<wonder> elements as desired. Now, the XML docu-
ment contains information about the Colossus of
Rhodes along with the Great Pyramid of Giza, which
is located in Giza, Egypt, and is 455 feet tall.

00 XML2eVQS_text.indb 400 XML2eVQS_text.indb 4 11/24/08 4:37:27 PM11/24/08 4:37:27 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

5

Writing XML
Rules for W

riting XM
L

Rules for Writing XML
XML has a structure that is extremely regular
and predictable. It is defined by a set of rules,
the most important of which are described
below. If your document satisfies these rules, it
is considered well-formed. Once a document is
considered well-formed, it can be used in many,
many ways.

A root element is required
Every XML document must contain one, and
only one, root element. This root element
contains all the other elements in the docu-
ment. The only pieces of XML allowed outside
(preceding) the root element are comments and
processing instructions (Figure 1.3).

Closing tags are required
Every element must have a closing tag. Empty
elements (see page 12) can use a separate closing
tag, or an all-in-one opening and closing tag
with a slash before the final > (Figure 1.4, and
Nesting Elements, later in this chapter).

Elements must be properly nested
If you start element A, then start element B,
you must first close element B before closing
element A (Figure 1.4).

Case matters
XML is case sensitive. Elements named
wonder, WONDER, and Wonder are considered
entirely separate and unrelated to each other
(Figure 1.5).

Values must be enclosed in
quotation marks
An attribute’s value must always be enclosed
in either matching single or double quotation
marks (Figure 1.6).

<?xml version="1.0"?>

<wonder>

 <name>Colossus of Rhodes</name>

</wonder>

x m l

 In a well-formed XML document, there Figure 1.3
must be one element (wonder) that contains all other
elements. This is called the root element. The first
line of an XML document is an exception because it’s a
processing instruction and not part of the XML data.

<?xml version="1.0"?>

<wonder>

 <name>Colossus of Rhodes</name>

 <main_image file="colossus.jpg"/>

</wonder>

x m l

 Figure 1.4 Every element must be enclosed by match-
ing tags such as the name element. Empty elements
like main_image can have an all-in-one opening and
closing tag with a final slash. Notice that all elements
are properly nested; that is, none are overlapping.

<name>Colossus of Rhodes</name>
<Name>Colossus of Rhodes</Name>

x m l

<name>Colossus of Rhodes</Name>

x m l

 The top example is valid XML, though Figure 1.5
it may be confusing. The two elements (name and
Name) are actually considered completely different
and independent. The bottom example is incorrect
since the opening and closing tags do not match.

<main_image file="colossus.jpg"/>

x m l

 Figure 1.6 The quotation marks are required. They
can be single or double, as long as they match each
other. Note that the value of the file attribute doesn’t
necessarily refer to an image; it could just as easily say
"The picture from last summer's vacation".

00 XML2eVQS_text.indb 500 XML2eVQS_text.indb 5 11/24/08 4:37:27 PM11/24/08 4:37:27 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

6

Chapter 1
Ele

m
en

ts
, A

ttr
ib

ut
es

, a
nd

 V
al

ue
s

<height>107</height>

Opening tag

Angle brackets Forward slash

Closing tag

Content

 A typical element is comprised of an Figure 1.7
opening tag, content, and a closing tag. This height
element contains text.

<height units="feet" > 107 </height>

Attribute name Value (in quotes)

Attribute

Equals sign

 The Figure 1.8 height element now has an attribute
called units whose value is feet. Notice that the word
feet isn’t part of the height element’s content. This
doesn’t make the value of height equal to 107 feet.
Rather, the units attribute describes the content of the
height element.

<wonder>
 <name> Colossus of Rhodes </name>
 <location>Greece</location>
 <height units="feet">107
 </height>
</wonder>

Opening tag

Content

Closing tag

 Figure 1.9 The wonder element shown here contains
three other elements (name, location, and height),
but it has no text of its own. The name, location and
height elements contain text, but no other elements.
The height element is the only element that has an
attribute. Notice also that I’ve added extra white
space (green, in this illustration), to make the code
easier to read.

Elements, Attributes, and Values
XML uses the same building blocks as HTML:
tags that define elements, values of those ele-
ments, and attributes. An XML element is
the most basic unit of your document. It can
contain text, attributes, and other elements.
An element has an opening tag with a name
written between less than (<) and greater than
(>) signs (Figure 1.7). The name, which you
invent yourself, should describe the element’s
purpose and, in particular, its contents. An ele-
ment is generally concluded with a closing tag,
comprised of the same name preceded with a
forward slash, enclosed in the familiar less than
and greater than signs. The exception to this is
called an empty element which may be “self-
closing,” and is discussed on page 12.

Elements may have attributes. Attributes, which
are contained within an element’s opening
tag, have quotation-mark delimited values that
further describe the purpose and content (if
any) of the particular element (Figure 1.8).
Information contained in an attribute is gener-
ally considered metadata; that is, information
about the data in the element, as opposed to
the data itself. An element can have as many
attributes as desired, as long as each has a
unique name.

The rest of this chapter is devoted to writing
elements, attributes, and values.

White Space
You can add extra white space, including line
breaks, around the elements in your XML code
to make it easier to edit and view (Figure
1.9). While extra white space is visible in the
file and when passed to other applications, it
is ignored by the XML processor, just as it is
with HTML in a browser.

00 XML2eVQS_text.indb 600 XML2eVQS_text.indb 6 11/24/08 4:37:27 PM11/24/08 4:37:27 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

7

Writing XML
How

 To Begin

<?xml version="1.0"?>

x m l

 Because the XML declaration is a Figure 1.10
processing instruction and not an element, there is
no closing tag.

How To Begin
In general, you should begin each XML docu-
ment with a declaration that notes what version
of XML you’re using. This line is called the
XML declaration (Figure 1.10).

To declare the version of XML that
you’re using:
1. At the very beginning of your document,

before anything else, type <?xml.
2. Then, type version="1.0".
3. Finally, type ?> to complete the declaration.

✔ Tips
■ The W3C released a Recommendation for

XML Version 1.1 in 2006, but it has few
new benefits and little to no support.

■ Be sure to enclose the version number
in single or double quotation marks. (It
doesn’t matter which you use, so long as
they match.)

■ Tags that begin with <? and end with ?>
are called processing instructions. In addition
to declaring the version of XML, process-
ing instructions are also used to specify
the style sheet that should be used, among
other things. Style sheets are discussed in
detail in Part 2, XSL.

■ This XML processing instruction can also
designate the character encoding (UTF-8,
ISO-8859-1, etc.), that you’re using for the
document. Character encodings are dis-
cussed in Appendix B.

00 XML2eVQS_text.indb 700 XML2eVQS_text.indb 7 11/24/08 4:37:28 PM11/24/08 4:37:28 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

8

Chapter 1
Cr

ea
tin

g
th

e
Ro

ot
 E

lem
en

t

Creating the Root Element
Every XML document must have one, and only
one, element that completely contains all the
other elements. This all-encompassing parent
element is called the root element.

To create the root element:
1. At the beginning of your XML document,

type <root>, where root is the name of the
element that will contain the rest of the
elements in the document (Figure 1.11).

2. Leave a few empty lines for the rest of your
XML document.

3. Finally, type </root> exactly matching the
name you chose in Step 1.

✔ Tips
■ Case matters. <WONDER> is not the

same as <Wonder> or <wonder>.
■ Element (and attribute) names should be

short and descriptive.
■ Element and attribute names must begin

with a letter, an underscore, or a colon.
Names that begin with the letters xml (in
any combination of upper- and lowercase),
are reserved and cannot be used.

■ Element and attribute names may contain
any number of letters, digits, underscores,
and a few other punctuation characters.

■ Caveat: Although colons, hyphens, and
periods are valid within element and attri-
bute names, I recommend that you avoid
including them, as they’re often used in
specific circumstances (such as for identify-
ing namespaces, subtraction, and object
properties, respectively).

■ No elements are allowed outside the
opening and closing root tags. The only
items that are allowed are processing
instructions (see page 7).

<?xml version="1.0"?>

<ancient_wonders>

</ancient_wonders>

x m l

 Figure 1.11 In HTML, the root element is always
<HTML>. In XML, you can use any valid name for
your root element, including <ancient_wonders>, as
shown here. No content or other elements are allowed
before or after the opening and closing root tags,
respectively.

00 XML2eVQS_text.indb 800 XML2eVQS_text.indb 8 11/24/08 4:37:28 PM11/24/08 4:37:28 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

9

Writing XML
W

riting Child Elem
ents

Writing Child Elements
Once you have created your root element, you
can create any child element you like. The idea
is that there is a relationship between the root,
or parent element, and its child element. When
creating child elements, use names that clearly
identify the content so that it’s easier to process
the information at a later date.

To write a child element:
1. Type <name>, where name identifies the

content that is about to appear; the child
element’s name.

2. Create the content.
3. Finally, type </name> matching the

word you chose in Step 1 (Figures 1.12
and 1.13).

✔ Tips
■ The closing tag is never optional (as it

sometimes is in HTML). In XML, ele-
ments must always have a closing tag.

■ The rules for naming child elements are
the same as those for root elements. Case
matters. Names must begin with a letter,
underscore, or colon, and may contain
letters, digits, and underscores. However,
although valid, I recommend that you
avoid including colons, dashes, and periods
within your names. In addition, you may
not use names that begin with the letters
xml, in any combination of upper- and
lowercase.

■ Names need not be in English or even the
Latin alphabet, but if your software doesn’t
support these characters, they may not dis-
play or be processed properly.

■ If you use descriptive names for your ele-
ments, your XML will be easier to leverage
for other uses.

<wonder>Colossus of Rhodes</wonder>

Opening tag

Angle brackets Forward slash

Closing tagContent

 Figure 1.12 A simple XML element is comprised of an
opening tag, content (which might include text, other
elements, or be empty), and a closing tag whose only
difference with the opening tag is an initial forward
slash.

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>Colossus of Rhodes</wonder>

</ancient_wonders>

x m l

 Figure 1.13 Every element in your XML document
must be contained within the opening and closing tags
of the root element.

00 XML2eVQS_text.indb 900 XML2eVQS_text.indb 9 11/24/08 4:37:28 PM11/24/08 4:37:28 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

10

Chapter 1
Ne

st
in

g
Ele

m
en

ts

Nesting Elements
Oftentimes when creating your XML docu-
ment, you’ll want to break down your data into
smaller pieces. In XML, you can create child
elements of child elements of child elements,
etc. The ability to nest multiple levels of child
elements enables you to identify and work with
individual parts of your data and establish a
hierarchical relationship between these indi-
vidual parts.

To nest elements:
1. Create the opening tag of the outer ele-

ment as described in Step 1 on page 9.
2. Type <inner>, where inner is the name of

the first individual chunk of data; the first
child element.

3. Create the content of the <inner> element,
if any.

4. Then, type </inner> matching the word
chosen in Step 2.

5. Repeat Steps 2–4 as desired.
6. Finally, create the closing tag of the outer

element as described in Step 3 on page 9.

✔ Tips
■ It is essential that each element be com-

pletely enclosed in another. In other words,
you may not write the closing tag for the
outer element until the inner element is
closed. Otherwise, the document will
not be considered well-formed, and will
generate an error in the XML processor
(Figure 1.14).

■ You can nest as many levels of elements as
you like (Figure 1.15).

■ When nesting elements, best practices
suggest that you indent the child element.
This enables you to easily see parent, child,
and sibling relationships. Most XML edi-
tors will automatically do this for you.

<wonder><name>Colossus</name></wonder>

<wonder><name>Colossus</wonder></name>

Correct (no overlapping lines)

Incorrect (the sets of tags cross over each other)

 Figure 1.14 To make sure your tags are correctly
nested, connect each set with a line. None of your sets
of tags should overlap any other set; each inner set
should be completely enclosed within its next outer set.

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name>Colossus of Rhodes</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 </wonder>

</<ancient_wonders>

x m l

 Figure 1.15 Now the wonder element is nested as
a child of the ancient_wonders element, and name,
location and height are nested as child elements of the
wonder element.

00 XML2eVQS_text.indb 1000 XML2eVQS_text.indb 10 11/24/08 4:37:29 PM11/24/08 4:37:29 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

11

Writing XML
Adding Attributes

Adding Attributes
An attribute stores additional information
about an element, without adding text to the
element’s content itself. Attributes are known
as “name-value pairs,” and are contained within
the opening tag of an element (Figure 1.16).

To add an attribute:
1. Before the closing > of the opening tag,

type attribute=, where attribute is the word
that identifies the additional data.

2. Then, type "value", where value is that
additional data. The quotes are required.

✔ Tips
■ Attribute names must follow the same rules

as element names, see the Tips on page 9.
■ No two attributes in a given element may

have the same name.
■ Unlike in HTML, attribute values must,

must, must be in quotes. You can use
either single or double quotes, as long as
they match within a single attribute.

■ If an attribute’s value contains double
quotes, use single quotes to contain the
value (and vice versa). For example,
comments= 'She said, "The Colossus has
fallen!"'.

■ Best practices suggest that attributes
should be used as “metadata”; that is, data
about data. In other words, attributes
should be used to store information about
the element’s content, and not the content
itself (Figure 1.17).

■ An additional way to mark and identify
distinct information is with nested ele-
ments (see page 10).

<height language="English">Colossus</name>

Attribute name Value (in quotes)

Attribute

Equals sign

 Attributes are Figure 1.16 name-value pairs
enclosed within the opening tag of an element. The
value must be contained in matched quotation marks
(either single or double).

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 </wonder>

</ancient_wonders>

x m l

 Figure 1.17 Attributes let you add information
about the contents of an element.

00 XML2eVQS_text.indb 1100 XML2eVQS_text.indb 11 11/24/08 4:37:29 PM11/24/08 4:37:29 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

12

Chapter 1
Us

in
g

Em
pt

y
Ele

m
en

ts

Using Empty Elements
Empty elements are elements that do not have
any content of their own. Instead, they will
have attributes to store data about the element.
For example, you might have a main_image
element with an attribute containing the file-
name of an image, but it has no text content
at all.

To write an empty element with a
single opening/closing tag:
1. Type <name, where name identifies the

empty element.
2. Create any attributes as necessary, follow-

ing the instructions on page 11.
3. Finally, type /> to complete the element

(Figure 1.18).

To write an empty element with
separate opening and closing tags:
1. Type <name, where name identifies the

empty element.
2. Create any attributes as necessary, follow-

ing the instructions on page 11.
3. Finally, type > to complete the opening tag.
4. Then, with no spaces, type </name> to

complete the element, matching the word
you chose in Step 1.

✔ Tips
■ In XML, both of the above methods are

equivalent (Figure 1.19). Which one to
use is a stylistic preference; I write elements
using a single opening / closing tag.

■ In contrast with HTML, you are not
allowed to use an opening tag with no cor-
responding closing tag. A document that
contains such a tag is not considered well-
formed and will generate an error in the
XML processor.

<main_image file="colossus.jpg"/>

Less than sign

Forward slash
and greater than sign

 Empty elements can combine the open-Figure 1.18
ing and closing tags in one, as shown here, or can
consist of an opening tag followed immediately by an
independent closing tag as seen in the example below.

<?xml version="1.0"?>

<wonders_of_the_world>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 <main_image file="colossus.jpg"
 w="528" h="349"/>

 <source sectionid="101"
 newspaperid="21"></source>

 </wonder>

</wonders_of_the_world>

x m l

 Figure 1.19 Typical empty elements are those like
source and main_image. Notice that these elements
only contain data in their attributes; the element has
no content of its own. I’ve used both empty element
formats in this example: single opening / closing tag
and separate opening and closing tags.

00 XML2eVQS_text.indb 1200 XML2eVQS_text.indb 12 11/24/08 4:37:30 PM11/24/08 4:37:30 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

13

Writing XML
W

riting Com
m

ents

Writing Comments
It’s often useful to annotate your XML
documents so that you know why you used a
particular element, or what a piece of infor-
mation specifically means. As with HTML,
you can insert comments into your XML
documents, and they will not be parsed by the
processor (Figure 1.20).

To write comments:
1. Type <!--.
2. Write your desired comments.
3. Finally, type --> to close the comment.

✔ Tips
■ Comments can contain spaces, text, ele-

ments, and line breaks, and can therefore
span multiple lines of XML.

■ No spaces are required between the double
hyphens and the content of the com-
ments itself. In other words <!--this is a
comment--> is perfectly fine.

■ You may not use a double hyphen within a
comment itself.

■ You may not nest comments within other
comments.

■ You may use comments to hide a piece of
your XML code during development or
debugging. This is called “commenting
out” a section. The elements within a com-
mented out section, along with any errors
they may contain, will not be processed by
the XML processor.

■ Comments are also useful for document-
ing the structure of an XML document, in
order to facilitate changes and updates in
the future (Figure 1.21).

<!-- updated May 23, 2008 -->

Less than sign, exclamation point, and two hyphens

Two hyphens
and greater than sign

Comments

 XML comments have the same syntax Figure 1.20
as HTML comments.

<?xml version="1.0"?>

<wonders_of_the_world>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 <main_image file="colossus.jpg"
 w="528" h="349"/>

 <!-- the research on this wonder of
 the world came in part from the
 sectionid of the newspaper
 (identified by newspaperid) in
 the source tag below -->

 <source sectionid="101"
 newspaperid="21"/>

 </wonder>

</wonders_of_the_world>

x m l

 Figure 1.21 Comments let you add information
about your code. They can be incredibly useful when
you (or someone else) need to go back to a document
and understand how it was constructed.

00 XML2eVQS_text.indb 1300 XML2eVQS_text.indb 13 11/24/08 4:37:30 PM11/24/08 4:37:30 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

14

Chapter 1
Pr

ed
ef

in
ed

 E
nt

iti
es

 –
 F

iv
e

Sp
ec

ia
l S

ym
bo

ls

Predefi ned Entities – Five Special
Symbols
Entities are a kind of autotext; a way of enter-
ing text into an XML document without typing
it all out. There are many letters and symbols
that can be inserted into HTML documents by
using entities. In XML, however, there are only
five predefined entities.

To write the fi ve predefi ned entities:
◆ Type & to create an ampersand char-

acter (&).
◆ Type < to create a less than sign (<).
◆ Type > to create a greater than sign (>).
◆ Type " to create a double quotation

mark (").
◆ Type ' to create a single quotation

mark or apostrophe (').

✔ Tips
■ Predefined entities exist in XML because

each of these characters have specific mean-
ings. For example, if you used (<) within
the text value of an element or attribute,
the XML processor would think you were
starting a new element (Figure 1.22).

■ You may not use (<) or (&) anywhere in
your XML document, except to begin a
tag or an entity, respectively. If you need to
use one of these characters within the text
value of an element or attribute, you must
use one of the predefined entities.

■ You may use ("), ('), or (>) within the text
value of an element or attribute. However,
when using (") or ('), be on the lookout
for unintentionally matching existing
quotes. Also, I always recommend using
the predefined entity for (>) to avoid any
possible confusion.

■ If you want to create additional entities for
your XML documents, you must explicitly
declare them (see Chapter 7).

<?xml version="1.0"?>

<wonders_of_the_world>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">< 107
 </height>

 <main_image file="colossus.jpg"
 w="528" h="349"/>

 <source sectionid="101"
 newspaperid="21"/>

 </wonder>

</wonders_of_the_world>

x m l

 Figure 1.22 When this document is parsed, the >
entity will be displayed as >. So when the value of the
height element is displayed, it will likely read some-
thing like "< 107 ". How it is displayed will depend
on the transformation of the XML, which is discussed
in Part 2, XSL.

00 XML2eVQS_text.indb 1400 XML2eVQS_text.indb 14 11/24/08 4:37:30 PM11/24/08 4:37:30 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

15

Writing XML
Displaying Elem

ents as Text

Displaying Elements as Text
If you want to write about XML elements and
attributes in your XML documents, you will
want to keep the XML processor from inter-
preting them, and instead just display them as
regular text. To do this, you enclose such infor-
mation in a CDATA section (Figure 1.23).

To display elements as text:
1. Type <![CDATA[.
2. Create the elements, attributes, and con-

tent that you would like to display, but not
process.

3. Finally, type]]> to complete the tag.

✔ Tips
■ Two other common uses for the CDATA

section are to enclose HTML and
JavaScript so that they are not parsed by
the XML processor.

■ CDATA stands for (unparsed) Character
Data, meaning that the CDATA content
will not be interpreted by the XML proces-
sor. This is opposed to PCDATA, which
stands for Parsed Character Data and is
discussed in Chapter 6.

■ The special meaning that symbols have is
ignored in the CDATA section. To display
the less than and ampersand symbols, you
would write < and &. If you write < and
&, that’s what will display; they will
not be replaced with < and &.

■ You may not nest CDATA sections.
■ CDATA sections can be used anywhere

within the root element of an XML
document.

■ If, for some reason, you want to write]]>
and you are not closing a CDATA section,
the > must be written as >. See page 14
and Appendix B for more information on
writing special symbols.

<?xml version="1.0"?>

<xml_book>

 <tags>

 <appearance>

<![CDATA[
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <main_image file="colossus.jpg"
 w="528" h="349"/>
 <source sectionid="101"
 newspaperid="21"/>
 </wonder>
</ancient_wonders>
]]>

 </appearance>

 </tags>

</xml_book>

x m l

 In this example about an example, I use Figure 1.23
CDATA to display the actual code, without the XML
processor parsing it first.

 Figure 1.24 Shown here in Internet Explorer 7 for
Windows, you can see how the elements within the
CDATA section are treated as text; in contrast with
the xml_book, tags, and appearance elements, which
are parsed by the XML processor.

00 XML2eVQS_text.indb 1500 XML2eVQS_text.indb 15 11/24/08 4:37:30 PM11/24/08 4:37:30 PM

Excerpted from XML, Second Edition: Visual QuickStart Guide by Kevin Howard Goldberg.
Copyright © 2009. Used with permission of Pearson Education, Inc. and Peachpit Press.

